a2zpapers.com

Exam. Code : 211003
 Subject Code : 4868

M.Sc. Mathematics $3^{\text {rd }}$ Semester
 NUMBER THEORY

Paper-MATH-586

Time Allowed-3 Hours]
[Maximum Marks-100

Note :-Candidates are required to attempt FIVE questions, selecting at least ONE question from each section. The fifth question may be attempted from any section.

SECTION-A

1. (a) Obtain three consecutive integers, each having a square factor.10
(b) State and prove Wolstenholme's theorem. 10
2. (a) For Fermat numbers F_{m} and $\mathrm{F}_{\mathrm{n}}, \mathrm{m}>\mathrm{n} \geq 0$, prove that $\operatorname{gcd}\left(\mathrm{F}_{\mathrm{m}}, \mathrm{F}_{\mathrm{n}}\right)=1$.
(b) Let r be a primitive root of integer n . Find the necessary and sufficient condition for r^{k} to primitive root of the integer n .

SECTION--B

3. (a) If r is a primitive root of the odd prime p , verify that $\operatorname{ind}_{r}(-1)=\operatorname{ind}_{T}(p-1)=\frac{1}{2}(p-1)$.
(b) Find all quadratic residues of 17.
4. State and prove Quadratic Reciprocity Law. 20

a2zpapers.com

SECTION-C

5. (a) Prove that $\tau(\mathrm{n})$ is an odd integer if and only if n is a perfect square.
(b) State and prove Möbius Inversion Formula. 10
6. Find all solutions (a, b, c) of $x^{2}+y^{2}=z^{2}$ with $\operatorname{gcd}(\mathrm{a}, \mathrm{b}, \mathrm{c})=1$, a even and $\mathrm{a}>0, \mathrm{~b}>0$ and $\mathrm{c}>0$. Further, prove that ab is divisible by 12 and $60 \mid a b c$.

SECTION-D

7. (a) Prove that the value of any infinite continued fraction is an irrational number.
(b) Let x be an arbitrary irrational number. If the rational number a / b, where $\mathrm{b} \geq 1$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, satisfies $\left|x-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ then prove that a / b is one of the convergents in the continued fraction representation of x.
8. (a) Let x_{1}, y_{1} be the fundamental solution of $x^{2}-d y^{2}=1$. Then prove that every pair of integers $\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}$ defined by the condition

$$
\mathrm{x}_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}} \sqrt{\mathrm{~d}}=\left(\mathrm{x}_{1}+\mathrm{y}_{1} \sqrt{\mathrm{~d}}\right)^{\mathrm{n}} \mathrm{n}=1,2,3, \ldots .
$$

is also a positive solution.
(b) Exhibit the solution of the equation $x^{2}-41 y^{2}=-1$. 10

