a2zpapers.com

Exam. Code : 211003 Subject Code : 4868

M.Sc. Mathematics 3rd Semester

NUMBER THEORY

Paper-MATH-586

Time Allowed—3 Hours] [Maximum Marks—100

Note :— Candidates are required to attempt FIVE questions, selecting at least ONE question from each section. The fifth question may be attempted from any section.

SECTION-A

- 1. (a) Obtain three consecutive integers, each having a square factor. 10
 - (b) State and prove Wolstenholme's theorem. 10
- 2. (a) For Fermat numbers F_m and F_n , $m > n \ge 0$, prove that gcd $(F_m, F_n) = 1$. 10
 - (b) Let r be a primitive root of integer n. Find the necessary and sufficient condition for r^k to primitive root of the integer n.

SECTION-B

3. (a) If r is a primitive root of the odd prime p, verify that

$$\operatorname{ind}_{r}(-1) = \operatorname{ind}_{r}(p-1) = \frac{1}{2}(p-1).$$
 10

- (b) Find all quadratic residues of 17. 10
- 4. State and prove Quadratic Reciprocity Law. 20

1

4483(2119)/HH-7946

(Contd.)

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

SECTION-C

- (a) Prove that τ(n) is an odd integer if and only if n is a perfect square.
 - (b) State and prove Möbius Inversion Formula. 10
- 6. Find all solutions (a, b, c) of x² + y² = z² with gcd(a, b, c) = 1, a even and a > 0, b > 0 and c > 0. Further, prove that ab is divisible by 12 and 60|abc.

20

SECTION-D

- 7. (a) Prove that the value of any infinite continued fraction is an irrational number. 10
 - (b) Let x be an arbitrary irrational number. If the rational number a/b, where b ≥ 1 and gcd(a, b) = 1, satisfies

 $\left| x - \frac{a}{b} \right| < \frac{1}{2b^2}$ then prove that a/b is one of the convergents in the continued fraction representation of x. 10

8. (a) Let x₁, y₁ be the fundamental solution of x² - dy² = 1. Then prove that every pair of integers x_n, y_n defined by the condition

$$x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n n = 1, 2, 3, \dots$$

is also a positive solution. 10
b) Exhibit the solution of the equation $x^2 - 41y^2 = -1$.
10

4483(2119)/HH-7946

2

500

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab